
ARx_UcrTutor1.ag

ARx_UcrTutor1.ag ii

COLLABORATORS

TITLE :

ARx_UcrTutor1.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY August 3, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_UcrTutor1.ag iii

Contents

1 ARx_UcrTutor1.ag 1

1.1 " . 1

1.2 arg FileName UCdir . 1

1.3 if FileName = ’?’ then . 1

1.4 do . 2

1.5 options prompt ’UCR FILENAME/A, DESTINATION/F: ’ . 2

1.6 pull FileName UCdir . 2

1.7 if FileName = ” then . 3

1.8 if UCdir = ” then . 3

1.9 UCdir = ’RAM:’ . 3

1.10 if right(UCdir, 1) ~= ’:’ & right(UCdir, 1) ~= ’/’ then . 4

1.11 ArcExt = upper(right(FileName, 3)) . 4

1.12 address command . 5

1.13 select . 5

1.14 when ArcExt = ’LZH’ | ArcExt = ’LHA’ then . 5

1.15 ’Lha -x x’ FileName ’#?’ UcDir . 6

1.16 call SetDest(’ZOO x//’) . 6

1.17 otherwise . 6

1.18 end . 7

ARx_UcrTutor1.ag 1 / 7

Chapter 1

ARx_UcrTutor1.ag

1.1 "

AN AMIGAGUIDE® TO ARexx Second edition (v2.0)
by Robin Evans

Note: This is a subsidiary file to ARexxGuide.guide. We recommend
using that file as the entry point to this and other parts of the
full guide.

Copyright © 1993,1994 Robin Evans. All rights reserved.

1.2 arg FileName UCdir .

Return to program listing

The keyword ARG is an abbreviation for the instruction PARSE UPPER ARG.
PARSE is an extraordinary instruction that gives ARexx power to handle

text strings that is unmatched in most programming languages.

As we’ve used it here, the instruction picks up the first two words (which
are anything with a space on either side) typed on the CLI after the
program name. In this case, we’ve picked up the filename and uncrunch
directory, if it’s included.

The ARG instruction also translates values into uppercase (capital
letters). That’s useful in this program, but there are times when it is
undesirable. In those cases, use the unabbreviated instruction PARSE ARG .

As it is used here, the ARG command won’t recognize either a file name or
a directory specification that includes spaces. It might be an interesting
exercise to add that capability, but we won’t do it in this tutorial.

1.3 if FileName = ’?’ then

ARx_UcrTutor1.ag 2 / 7

Return to program listing

Shell users are accustomed to getting a template of options after typing a
command name followed by ’?’. It works like this with the copy command:

>> copy ?
FROM/M,TO/A,ALL/S,QUIET/S,BUF=BUFFER/K/N,CLONE/S,DATES/S,NOPRO/S,
COM/S,NOREQ/S:

This line gives UnCrunch.rexx the same facility by recognizing the cry
for help. If the user has typed ‘UnCrunch ?’, the following lines will
be executed.

1.4 do

Return to program listing

The keyword DO groups the following clauses into what ARexx considers
a single instruction . It performs a function similar to the block
identifier ’{’ in C or ’BEGIN’ in Pascal.

DO is often used in conjunction with an IF/THEN instruction because IF
will execute only the clause that immediately follows it. Using DO turns
multiple clauses into a single instruction so that all of them will be
executed when the IF condition is true.

Like the ’}’ closing brace in C, END is a subkeyword that must always
accompany DO.

1.5 options prompt ’UCR FILENAME/A, DESTINATION/F: ’

Return to program listing

The OPTIONS keyword is used for a number of unrelated tasks in ARexx.
Here, it sets up a prompt string to be used later by another instruction.
Note that OPTIONS PROMPT doesn’t actually present a prompt to the user.
That is done with the PULL keyword on the next line.

1.6 pull FileName UCdir

Return to program listing

Like ARG , PULL is an abbreviation for a variation of the PARSE
instruction . The full instruction in this case is PARSE UPPER PULL .

This instruction echoes the ARG instruction used at the beginning of the
main program listing. That’s because it does the same thing except that,

ARx_UcrTutor1.ag 3 / 7

instead of taking its arguments from the command line, it pulls them
interactively from the user. Here’s the effect of this command:

> rx uncrunch ?
UCR FILENAME/A, DESTINATION/F:

The template defined by the OPTIONS PROMPT instruction is presented to
the user with the cursor positioned one space after the colon. (There is a
space before the final quotation mark in the OPTIONS PROMPT parameter.)
Once the user presses the return key, the PULL instruction will retrieve
whatever was entered.

1.7 if FileName = ” then

Return to program listing

Since the program can’t do anything without a filename, this section makes
sure that we don’t continue without one. This IF instruction compares
[FileName] to an empty string , which is like saying, ’If there isn’t a
FileName, then...’.

The ‘=’ sign here is a comparison operator that means something like ‘is
the same as’. Using the single ‘=’ comparison operator means that any
leading or trailing blanks on the value being compared will not be
significant. In other words, { ’ foo ’ } will be the same as { ’foo’
}.

In cases where exact comparison is desired, use the comparative operator
’==’.

1.8 if UCdir = ” then

Return to program listing

The IF instruction here, unlike the one above that checks for a blank
filename, is not followed by an ’end’ or ’endif’ keyword. In many
languages, ’endif’ is a required part of any ’if’ command. In ARexx,
however, the IF/THEN instruction will automatically execute the one clause
following THEN, so ’endif’ is not required.

On the other hand, the secondary keyword THEN is required whenever IF is
used.

1.9 UCdir = ’RAM:’

ARx_UcrTutor1.ag 4 / 7

Return to program listing

We’ve used the ‘=’ sign in two previous clauses, but this ‘=’ sign means
something different. In the line directly above this one {if UCdir = ’’ }
the ‘=’ sign is a comparison operator .

Here, however, the ‘=’ sign performs a significantly different task; it
identifies an assignment clause that associates the value of the
expression on the right side of the sign, ’RAM:’, with the variable to

its left, [UCDir].

1.10 if right(UCdir, 1) ~= ’:’ & right(UCdir, 1) ~= ’/’ then

Return to program listing

Here we find a new aspect of ARexx called functions . Functions are
self-contained programs that perform an task and return a value of some
sort. Although it would be redundant, an add() function might take the
arguments 2 and 3. It would return the value 5.

There are three classes of functions. RIGHT() is a built-in function
that is always available to any ARexx program. This line shows a standard
form of the function. The values inside the parentheses are arguments that
are sent to the function.

In this case, the RIGHT() function gets the value of the variable
[UcDir] and the number 1. It then ’returns’ the right-most character of
[UcDir] There is no assignment clause here because the value returned by
the function is used directly in the IF clause.

ARexx has several functions that perform similar tasks. In line 79 , the
verify() function is used along with right() to accomplish the same

thing done here with the two comparative operations.

1.11 ArcExt = upper(right(FileName, 3))

Return to program listing

Two functions are nested in this clause. The value returned by the
inner function, RIGHT() , becomes an argument to the outer function,
UPPER() .

The RIGHT() function retrieves the last (or right-most) three characters
of the variable [FileName]. The UPPER() function translates those
characters to uppercase, which would make the comparisons in the lines
below more accurate if the [FileName] variable contained a value in
mixed-case.*

The result or value returned by UPPER() is assigned to the variable to

ARx_UcrTutor1.ag 5 / 7

the left of the ‘=’ sign -- [ArcExt]. The assignment to a variable will
allow us to use the result of this function again without needing to call
the function a second time.

* The UPPER() function is included here to demonstrate how it can be used,
even though it is redundant in this case since the [FileName] was already
translated to uppercase in line 3 by the ARG instruction.

1.12 address command

Return to program listing

The ADDRESS instruction changes the host of subsequent commands. The
’COMMAND’ option indicates that AmigaDOS should serve as the host. Now
that this instruction has been issued, any commands issued later in the
program will be sent to AmigaDOS.

1.13 select

Return to program listing

SELECT is a powerful cousin of the IF instruction . It precedes a
list of possible conditions each of which is identified by the WHEN
keyword. ARexx makes its way through the list and executes the instruction
following the first conditional that is TRUE. If there is no match, the
OTHERWISE clause , which is required, will be executed.

1.14 when ArcExt = ’LZH’ | ArcExt = ’LHA’ then

Return to program listing

The syntax for WHEN is similar to that of IF except that it will not
take an ELSE clause since each successive WHEN clause already acts
like ELSE. Only the first WHEN clause that tests true will be executed.
The following WHEN clauses as well as the concluding OTHERWISE will be
skipped.

Here, the clause checks the variable [ArcExt] against either of two
possible values. The ’|’ in the middle of the clause is an ARexx
logical operator that means OR. This clause will test TRUE if [ArcExt]

is equal to either of the supplied values.

ARx_UcrTutor1.ag 6 / 7

1.15 ’Lha -x x’ FileName ’#?’ UcDir

Return to program listing

The command ’Lha’ has nothing to do with ARexx, but its presence here
begins to hint at the extraordinary power of ARexx as an interprocess
communication language.

The quotation marks surrounding the command tell ARexx that it should not
interpret anything inside the string . For instance, without the
quotation marks, ARexx would try to subtract a variable [x] from a
variable [Lha] when encountering the terms ‘Lha -x’. It wouldn’t work.
Instead, the quotation marks identify the clause as a command that
should be passed to the host address.

Because of the ADDRESS COMMAND instruction
above

, the host address for
ARexx is now the shell. The command -- ‘Lha’ with all the options -- will
be sent to AmigaDOS and executed there as it would be if it were typed in
directly.

1.16 call SetDest(’ZOO x//’)

Return to program listing

Although the syntax is similar, the function used here is different than
those used previously. SetDest() is an internal function defined within
this script.

When it encounters the function call, the interpreter looks for a
label matching the function name. The colon after SetDest: tells ARexx

that the following program following lines define the function.

Functions can be used in either of two forms that make them easy to spot.
The symbol or word used to identify the function is either followed by a
set of parentheses or it is preceded by the keyword CALL . (Parentheses
may be used even with the CALL keyword, as they are in this script, but
are not necessary.)

1.17 otherwise

Return to program listing

OTHERWISE is a keyword that must always appear as the final clause
in the list of WHEN conditions associated with a SELECT instruction .
The clause after OTHERWISE is executed only if all of the preceding WHEN
conditions failed.

ARx_UcrTutor1.ag 7 / 7

Even if there’s nothing to do, OTHERWISE must be used, but need not be
followed by anything other than the END that closes the SELECT range.

select
when ...
when ...
otherwise

end

1.18 end

Return to program listing

This is an example of the only situation in ARexx where END is not
paired with the DO keyword . In this case, it closes the range of
clauses associated with SELECT . END must always be used with SELECT.

	ARx_UcrTutor1.ag
	"
	 arg FileName UCdir .
	 if FileName = '?' then
	 do
	 options prompt 'UCR FILENAME/A, DESTINATION/F: '
	 pull FileName UCdir
	 if FileName = '' then
	 if UCdir = '' then
	 UCdir = 'RAM:'
	 if right(UCdir, 1) ~= ':' & right(UCdir, 1) ~= '/' then
	 ArcExt = upper(right(FileName, 3))
	 address command
	 select
	 when ArcExt = 'LZH' | ArcExt = 'LHA' then
	 'Lha -x x' FileName '#?' UcDir
	 call SetDest('ZOO x//')
	 otherwise
	 end

